

BESCHREIBUNG

Die Micro SPS CAN 4 ANA ist eine Kleinststeuerung für automotive Anwendungen mit 4 analogen Ein- und Ausgängen, welche als Strom-, Frequenz- und Spannungsmessung konfiguriert werden können. Über die CANBus Schnittstelle können alle Daten bequem gesendet und ausgelesen werden.

Steckeransicht

TECHNISCHE DATEN

PRÜFNORMEN UND BESTIMMUNGEN

Gehäuse	PA66GF30 Kunststoff	E1 Genehmigung	ECE R10 05 7522	
Stecker	DEUTSCH DTM04-08PA	Elektrische Tests	Gem. ISO 16750-2 bzw4:	
Gewicht	72 g		Versorgungsspannung Langzeit Überspannung bei T20 °C	
Temperaturbereich nach ISO 16750-4	-40 °C+85 °C		Startprofil Verpolung	
Schutzart nach ISO 20653	IP6K8, bei korrekter Einbaulage (Stecker nach unten)		Unterbrechung Pin Unterbrechung Stecker	
Stromaufnahme	35 mA (bei 12 V) 40 mA (bei 24 V)		Kurzschluss busiellung Kurzschluss Versorgungs- I/O-Leitungen Lagerungstest T_{\min} und T_{\max}	
Absicherung	Stromaufnahme + Laststrom		Operationstest T_{min}^{min} und T_{max}^{max}	
Ein- / Ausgangskanäle (Gesamt)	4		Gem ISO 7637: KFZ-Pulse 1 bis 4 nach ECE R10	
Eingänge	Konfigurierbar: Analog (012,5 V / 036 V) Digitaleingang Stromeingang (024 mA / 31 mA) Frequenzeingang		Gem. ISO 10605: ESD Pins: ± 10 kV ESD Gehäuse: ± 8 kV ESD indirekte Entladung: ± 15 kV	
Ausgänge	Konfigurierbar: Konstantspannungsquelle / Analogspannungsausgang	PROGRAMMII	ERUNG	
Versorgungsspannung	932 V (Code C bei 12 V, Code E bei	Programmiersystem		
	24 V, nach ISO 16750-2)	MRS APPLICS STU	JDIO ist die neue Entwicklungs- und Toolplattform	
Überspannungsschutz	≥ 33 V		uppen. Programmieren Sie mit unserer	
Ruhestrom	20 μA (bei 12 V und 24 V)	eigenständigen Software einfach und schnell Ihr		
Verpolschutz	ja	Steuerungen. Ihre A	Applikation steht im Fokus.	
CAN Schnittstellen	Highspeed 2.0 A/B nach ISO 11898-2			

ÜBERSICHT DER EINGÄNGE (BESTÜCKUNGSABHÄNGIG)

Pin 5, 8 (X, C)	Programmierbar als Analog- oder Digital- eingang Auflösung Genauigkeit	12 Bit 1% full scale	Pin 2, 3 (87A, 87)	Programmierbar als Analog- oder Digital- eingang Auflösung Genauigkeit	12 Bit 1% full scale
Spannungseingang 012,5 V (siehe <u>A</u>) ¹	Eingangswiderstand Eingangsfrequenz ² Abweichung Umrechnungsfaktor	44 kΩ f_g = 30 Hz ± 3 % 3 (33 Digits ≈ 100 mV, S.5)	Spannungseingang 012,5 V (siehe A)¹	Eingangswiderstand Eingangsfrequenz ² Abweichung Umrechnungsfaktor	80 kΩ f_g =3 0 Hz ± 3 % 3 (33 Digits ≈ 100 mV, S.5)
Spannungseingang 036 V (siehe <u>B</u>)¹	Eingangswiderstand Eingangsfrequenz ² Abweichung Umrechnungsfaktor	29 kΩ f _g = 75 Hz ± 3 % 8,8 (12 Digits ≈ 100 mV, S.5)	Spannungseingang 036 V (siehe <u>B</u>)¹	Eingangswiderstand Eingangsfrequenz ² Abweichung Umrechnungsfaktor	54 kΩ f_g =75 Hz ± 3 % 8,8 (12 Digits ≈ 100 mV, S.5)
Digitaleingang ¹	Eingangswiderstand Einschaltpegel (12.5 V) Ausschaltpegel (12.5 V) Einschaltpegel (36 V) Ausschaltpegel (36 V)	44 kΩ / 29 kΩ 7 V 5,5 V 20,5 V 15,6 V	Digitaleingang ¹	Eingangswiderstand Einschaltpegel (12,5 V) Ausschaltpegel (12,5 V) Einschaltpegel (36 V) Ausschaltpegel (36 V)	80 kΩ / 54 kΩ 7 V 5,5 V 20,5 V 15,6 V
Stromeingang 024/31 mA (siehe <u>C</u>) ³	Eingangswiderstand Umrechnungsfaktor 024 mA 031 mA	500 Ω ≈ 0,0059 (1695 Digits ≈ 10 mA) ≈ 0,0175 (580 Digits ≈ 10 mA)	Stromeingang 024/31 mA (siehe C) ³	Eingangswiderstand Umrechnungsfaktor 024 mA 031 mA	500 Ω ≈ 0,0059 (1695 Digits ≈ 10 mA) ≈ 0,0175 (580 Digits ≈ 10 mA)
Frequenzeingang (siehe D) ⁴	Eingangswiderstand Abweichung Einschaltpegel (12,5 V) Ausschaltpegel (12,5 V) Einschaltpegel (36 V) Ausschaltpegel (36 V)	$44 kΩ / 29 kΩ$ bis 4,3 kHz max. $\pm 3 \%$ 7 V 5,5 V 20,5 V	 ¹ An Pins, die als Analog- oder Digitaleingänge konfiguriert sind, müssen stets definierte Spannungssignale anliegen. Andernfalls können sich diese in einem undefinierten Zustand befinden und Fehlfunktionen verursachen. ² Grenzfrequenz (-3 dB) ³ Umschaltung über Messbereich ⁴ Bei Programmierung über C-Code können beide Frequenzeingänge parallel ausgelesen werden. 		

KONFIGURATION DER EINGÄNGE

Gewünscht Konfiguration	Einstellen über
Spannungseingang 012,5 V	DO_I_NAME = 0, DO_30V_10V_NAME = 0, PWM_20MA_NAME = 0
Spannungseingang 036 V	DO_I_NAME = 0, DO_30V_10V_NAME = 1, PWM_20MA_NAME = 0
Analogspannungsausgang /Stromeingang	DO_I_NAME = 1, PWM_20MA_NAME setzen (0100 % = 0- U_{B-3} V 5)
Stromausgang	DO_I_NAME = 0, PWM_20MA_NAME setzen (0100 % =0-25 mA)
Frequenzeingang (X und C)	Einlesen der Eingangsfrequenz über FREQ_NAME

⁵ gilt bis zu einer Ausgangsspannung von maximal 12 V, was einer Versorgungsspannung von ca. 15 V entspricht.

DATENBLATT CAN 4 ANA DTM STECKER 1.112.9

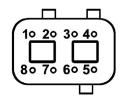
ÜBERSICHT DER AUSGÄNGE

Pin 2, 3, 5, 8 (87A, 87, X, C)

Digital, plusschal- Schaltspannung tend Schaltstrom

UB_{-3V} 25 mA

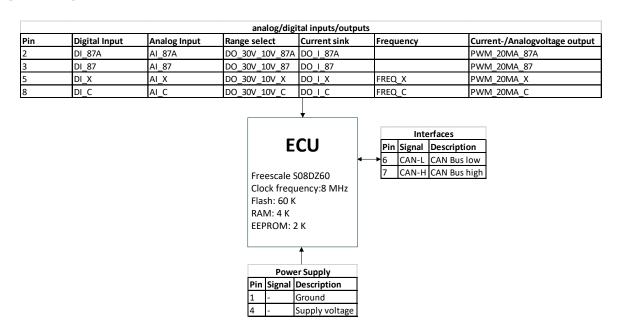
Analogspannungsausgang

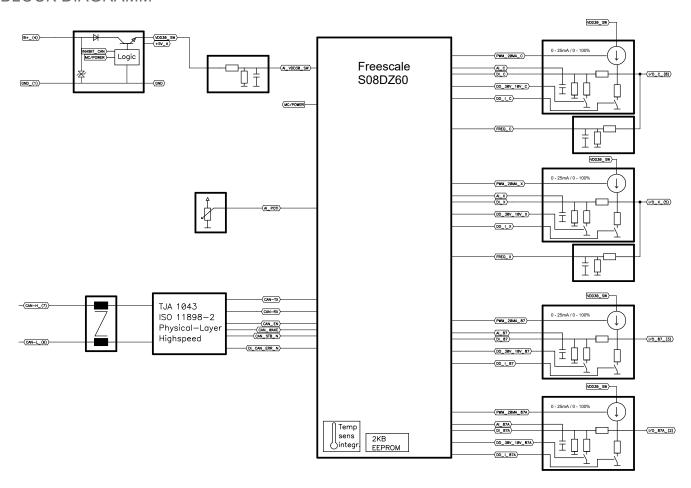

Toleranz ± 3 %

ANSCHLUSSBELEGUNG SPANNUNGSVERSORGUNG UND INTERFACES

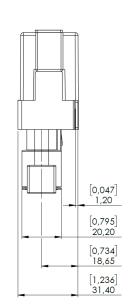
Pin	Pin Beschreibung	Pin	Pin Beschreibung
1	KL31 / Masse / GND	6	CAN-L
4	KL30 / Versorgungsspannung	7	CAN-H

ANSCHLUSSBELEGUNG EIN- UND AUSGÄNGE


Pin	Programm Signal	Pin Beschreibung	Pin	Programm Signal	Pin Beschreibung	
2	DI_87A AI_87A DO_30V_10V_87A DO_I_87A PWM_20MA_87A	Digitaleingang 87A Analogeingang 87A Bereichsumschaltung 12.5/36 V Stromsenke 87A Stromausgang 87A Analogspannungsausgang	5	DI_X AI_X DO_30V_10V_X DO_I_X PWM_20MA_X	Digitaleingang X Analogeingang X Bereichsumschaltung 12,5/36 V Stromsenke X Stromausgang X Analogspannungsausgang	
3	DI_87 AI_87 DO_30V_10V_87 DO_I_87	Digitaleingang 87 Analogeingang 87 Bereichsumschaltung 12,5/36 V Stromsenke 87	8	FREQ_X DI_C AI_C DO_30V_10V_C	Frequenzeingang X Digitaleingang C Analogeingang C Bereichsumschaltung 12,5/36 V	
	PWM_20MA_87	Stromausgang 87 Analogspannungsausgang		DO_I_C PWM_20MA_C FREQ_C	Stromsenke C Stromausgang C Analogspannungsausgang Frequenzeingang C	

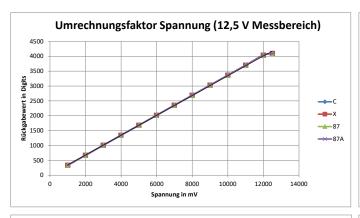

Ansicht von unten

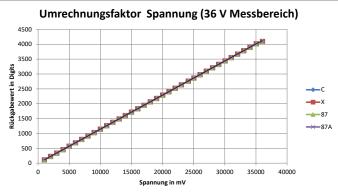
PIN - ÜBERSICHT

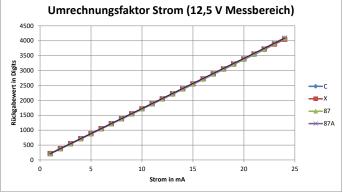


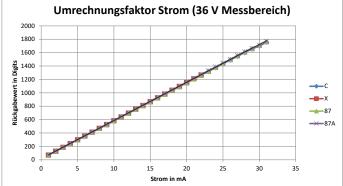
BLOCK DIAGRAMM

TECHNISCHE ZEICHNUNG IN MM [INCH]




Ansicht von der Seite


[1,289] 32,75 [1,245] 31,62 [1,850] 47,00 [1,245] [1,850] 47,00


Ansicht von vorne

UMRECHNUNGSFAKTOREN

DATENBLATT CAN 4 ANA DTM STECKER 1.112.9

BESTÜCKUNGSVARIANTEN UND BESTELLINFORMATIONEN

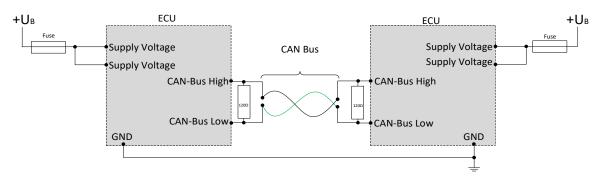
Bestellnummer	Pin Nummerierung der Eingänge			CAN Bus	Bemerkungen	
	A Spannung	B Spannung	C Strom	D Frequenz	High-Speed	
	012,5 V	036 V	031 mA	04,3 kHz		
1.112.902.00	2,3,5,8	2,3,5,8	2,3,5,8	5,8	Х	

Seite 6 von 9 ©MRS Electronic GmbH & Co. KG Änderungen vorbehalten Version 2.5

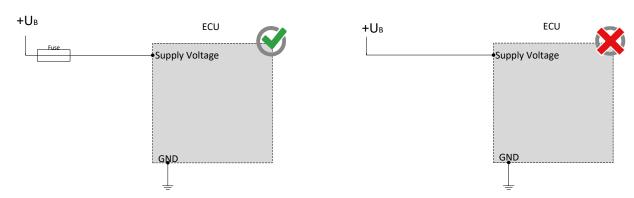
DATENBLATT CAN 4 ANA DTM STECKER 1.112.9

ZUBEHÖR

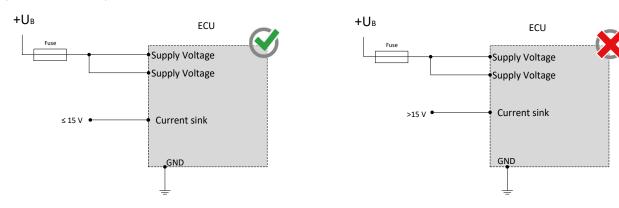
Beschreibung	Bestellnummer	
Programmiertool MRS Applics Studio	1.100.200.01	
Steckerpaket für DTM04-08	301995	
Montagebügel	502693	
PCAN-USB Interface	105358	
Einstecklasche für Gehäuse	1.017.080.00	
Programmierkabelsatz für DTM Module	302379	


HERSTELLER

MRS Electronic GmbH & Co. KG Klaus-Gutsch-Str. 7 78628 Rottweil Germany



HINWEISE ZUR BESCHALTUNG UND LEITUNGSFÜHRUNG


Die CAN-Bus Kommunikation stellt die Hauptkommunikation zwischen Steuergerät und Fahrzeug dar. Schließen Sie daher den CAN-Bus mit besonderer Sorgfalt an und überprüfen Sie die korrekte Kommunikation mit dem Fahrzeug, um ungewünschtes Verhalten zu vermeiden.

Die Steuerung muss entsprechend gegen Überlast abgesichert werden (siehe Leistungsdaten)

Bei Nutzung des Pull-Down-Widerstandes am Analogeingang (Aktivierung DO_I_C/X/87/87A) darf an den Eingang keine Spannung größer als 15 V angeschlossen werden.

DATENBLATT CAN 4 ANA DTM STECKER 1.112.9

SICHERHEITS- UND MONTAGEHINWEISE

Lesen Sie diese Hinweise unbedingt gründlich und vollständig durch, bevor Sie mit dem Modul arbeiten. <u>Beachten und befolgen Sie die Anweisungen der Betriebsanleitung; siehe www.mrs-electronic.com</u>

Qualifikation des Personals: Nur entsprechend qualifiziertes Fachpersonal darf an diesem Modul oder in dessen Nähe arbeiten.

SICHERHEIT

WARNUNG! Gefahr durch Fehlfunktionen am Gesamtsystem.

Unvorhergesehene Reaktionen oder Fehlfunktionen am Gesamtsystem können die Sicherheit von Mensch oder Maschine gefährden.

• Stellen Sie sicher, dass das Modul mit der korrekten Software ausgestattet ist, sowie Beschaltung und Parametrierung der Hardware entsprechen.

WARNUNG! Gefahr durch ungeschützte bewegte Komponenten.

Bei der Inbetriebnahme und Wartung des Moduls können vom Gesamtsystem unvorhergesehene Gefahren ausgehen.

- · Schalten Sie vor jeglichen Arbeiten das Gesamtsystem aus und sichern Sie es gegen unbeabsichtigtes Wiedereinschalten.
- Stellen vor Beginn der Inbetriebnahme sicher, dass sich das Gesamtsystem und Teile des Systems in einem sicheren Zustand befinden.
- Das Modul darf nie unter Last und auch nicht unter Spannung verbunden und getrennt werden.

VORSICHT! Verbrennungsgefahr am Gehäuse.

Das Gehäuse des Moduls kann eine erhöhte Temperatur aufweisen.

• Berühren Sie das Gehäuse nicht und lassen Sie vor Arbeiten am System alle Systemkomponenten abkühlen.

BESTIMMUNGSGEMÄSSE VERWENDUNG

Das Modul dient zur Steuerung oder Schaltung eines oder mehreren elektrischen Systemen oder Subsystemen in Kraftfahrzeugen und Arbeitsmaschinen und darf nur für diesen Zweck eingesetzt werden. Das Modul darf nur im Industriebereich betrieben werden.

WARNUNG! Gefahr durch nicht bestimmungsgemäße Verwendung!

Das Modul ist nur für den Einsatz in Kraftfahrzeugen und mobilen Arbeitsmaschinen bestimmt.

- · Die Anwendung in sicherheitsrelevanten Systemteile für Personenschutz ist nicht zulässig.
- Verwenden Sie das Modul nicht in explosionsgefährdeten Bereichen.

Sie handeln bestimmungsgemäß:

- wenn der Betrieb des Moduls innerhalb des zugehörigen Datenblatt spezifizierten und freigegebenen Betriebsbereiche erfolgt.
- wenn Sie sich strikt an diese Hinweise halten und keine eigenmächtigen Fremdhandlungen vornehmen, die Sicherheit von Personen und die Funktionstüchtigkeit des Moduls gefährden.

Pflichten der Hersteller von Gesamtsystemen

Systementwicklungen, Installation und Inbetriebnahme von elektrischen Systemen dürfen nur von ausgebildeten und erfahrenem Personal vorgenommen werden, die mit dem Umgang der eingesetzten Komponente sowie des Gesamtsystems hinreichend vertraut sind.

Es muss sichergestellt werden, dass nur funktionstüchtige Module eingesetzt werden. Das Modul muss bei Ausfall bzw. Fehlverhalten sofort ausgetauscht werden.

Es muss sichergestellt werden, dass die Beschaltung und Programmierung des Moduls bei einem Ausfall oder einer Fehlfunktion nicht zu sicherheitsrelevanten Fehlfunktionen des Gesamtsystems führt.

Der Hersteller des Gesamtsystems ist verantwortlich für den korrekten Anschluss der gesamten Peripherie (z.B. Kabelquerschnitte, Stecker, Vercrimpungen, richtige Auswahl/Anschluss von Sensoren/Aktoren).

Das Modul darf nicht geöffnet werden. Am Modul dürfen keine Änderungen bzw. Reparaturen durchgeführt werden.

Montage

Der Montageort muss so gewählt sein, dass das Modul möglichst geringer mechanischer und thermischer Belastung ausgesetzt ist. Das Modul darf keiner chemischen Belastung ausgesetzt sein.

Das Modul darf nach Herabfallen nicht mehr verwendet werden und muss zur Überprüfung an MRS zurück gesendet werden.

Montieren Sie das Modul so, dass die Stecker nach unten zeigen. So kann gegebenenfalls Kondenswasser abfließen. Durch Einzelabdichtung der Kabel/Adern muss sichergestellt werden, dass kein Wasser in das Modul gelangen kann.

Inbetriebnahme

Die Inbetriebnahme darf nur von qualifiziertem Personal durchgeführt werden. Die Inbetriebnahme darf nur erfolgen, wenn der Zustand des Gesamtsystems den geltenden Richtlinien und Vorschriften entspricht.

STÖRUNGSBEHEBUNG UND WARTUNG

HINWEIS Das Modul ist wartungsfrei und darf nicht geöffnet werden!

Weißt das Modul Beschädigungen an Gehäuse, Rastnasen, Dichtungen, Flachsteckern auf, muss das Modul außer Betrieb genommen werden.

Die Störungsbehebung und Reinigungsarbeiten dürfen nur im spannungslosen Zustand durchgeführt werden. Entfernen Sie das Modul zur Störungsbehebung und Reinigung. Beachten Sie die Hinweise in den anderen technischen Unterlagen.

Prüfen Sie die Unversehrtheit des Moduls sowie alle Flachstecker, Anschlüsse und Pins auf mechanische Schäden, Schäden durch Überhitzung, Isolationsschäden und Korrosion. Prüfen Sie bei Fehlschaltungen die Software, Beschaltung und Parametrierung.

Reinigen Sie das Modul nicht mit Hochdruckreinigern oder Dampfstrahlern. Verwenden Sie keine aggressive Lösungs- oder Scheuermittel.