

BESCHREIBUNG

Die kompakte Steuerung CAN I/O in der LHS (Low- und High Side) Ausführung bietet zu den standardmäßigen vier Highside Ausgängen nun zusätzliche vier Lowside Ausgänge. Die perfekte Lösung zum Ansteuern von massegesteuerten Aktoren und Motorbrücken.

Einbauansicht

Steckeransicht

TECHNISCHE DATEN

PRÜFNORMEN UND BESTIMMUNGEN

Gehäuse	Plastik	CE Konformität	Konform		
Stecker	22 pin Molex Mini Fit Junior	E1-Zeichen	ECE R10 06 8369		
Gewicht	75 g	Elektrische Prü-	Gemäß ISO 16750		
Temperaturbereich (laut ISO 16750-4)	-40 bis +85 °C (bei +85 °C Bemessungsleistung, siehe Seite 4)	fungen	Kurzschlussfestigkeit Verpolschutz Unterbrechungsstift und Stecker Über-		
Sicherheitsschutzklasse	IP53		spannung bei +65 °C Betrieb und Lagerungstest bei T _{min} und		
Stromaufnahme	30 mA		T		
Absicherung	20 A		Oberlagerte wechselspannung		
Ein- / Ausgangskanäle (Gesamt)	14 (6 Eingänge, 8 I/Oʻs)		Langsame Abnahme und Erhöhung der Versorgungsspannung Kurzzeitiger Spannungsabfall		
Eingänge	Konfigurierbar als: Digital, positive Gebersignale Analog (011.4 / 33.68 V) Frequenz		Reset-Verhalten bei Spannungsabfall Feuchte Hitze Nach ISO 7637-2: Puls 1, 2a, 2b, 3a, 3b		
Ausgänge	Konfigurierbar als: Digital, plusschaltend (high side) Digital, negativschaltend (low side)	PROGRAMMI	ERUNG		
Betriebsspannung	9–32 V	Programmiersyster	n		
Detriebssparifium	12 V (Code B) und 24 V (Code E) ISO 16750–2 konform	MRS Developers S	Studio Funktionsbibliothek, ähnlich FUP pro-		
Einschaltspannung	8 V	grammierbar. Kund	enspezifische Programmteile können in "C"		
Überspannungsschutz	≥ 33 V	Code integriert were Bauelemente ausre	den. Programmspeicher für ca. 300 einfache bishand		
Unterspannungsabschal- tung	8 V	Dauelemente ausre	яспени.		
Ruhestrom	@ 12 V = 150 μA @ 24 V = 200 μA				
Verpolschutz	Ja				
CAN Schnittstellen	CAN Bus Schnittstelle 2.0 A/B, ISO 11898 konform				

ÜBERSICHT DER EINGÄNGE

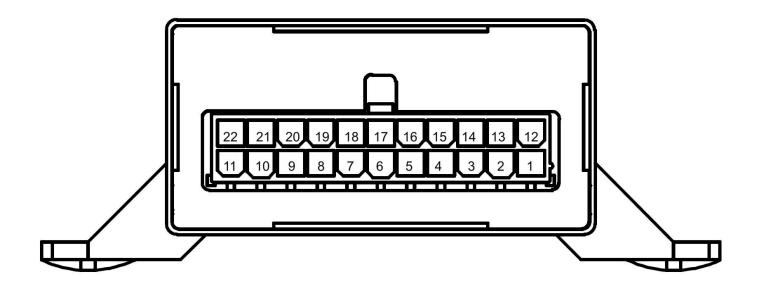
Pin 3, 5, 6	Analog- oder Digital- eingang Auflösung Abweichung	12 Bit ± 1 % full scale	Pin 13, 14, 15, 16	Analog- oder Digital- eingang Auflösung Abweichung	12 Bit ± 1 % full scale
Spannungseingang 011.4 V (siehe <u>A</u>)	Eingangswiderstand Eingangsfrequenz Linearitätsabweichung	22.6 ±0.5 kΩ f _g *=55 Hz 3 %	Spannungseingang 011.4 V (siehe <u>E</u>)	Eingangswiderstand Eingangsfrequenz Linearitätsabweichung	15.6 ±0.5 kΩ f _g *=55 Hz 3 %
Digitaleingang Positiv (siehe <u>A</u>)	Eingangswiderstand Eingangsfrequenz Einschaltpegel Ausschaltpegel	22.2 k Ω f _g *= 55 Hz 6.5 ± 0.2 V 4.5 ± 0.2 V	Digitaleingang Positiv (siehe <u>E</u>)	Eingangswiderstand Eingangsfrequenz Einschaltpegel Ausschaltpegel	15.6 ±0.5 kΩ f _g *= 60 Hz 6.5 ± 0.2 V 4.5 ± 0.2 V
Pin 2	Analog- oder Digital- eingang Auflösung Abweichung	12 Bit ± 1 % full scale	Pin 18, 19	Analog- oder Digital- eingang Auflösung Abweichung	12 Bit ± 1 % full scale
Spannungseingang 033.68 V (siehe <u>B</u>)	Eingangswiderstand Eingangsfrequenz Linearitätsabweichung	66.6 kΩ f _g *= 40 Hz ± 3 %	Spannungseingang 011.4 V (siehe <u>E</u>)	Eingangswiderstand Eingangsfrequenz Linearitätsabweichung	22.6 ±0.5 kΩ f _g *=55 Hz 3 %
Digitaleingang Positiv (siehe <u>B</u>)	Eingangswiderstand Eingangsfrequenz Einschaltpegel Ausschaltpegel	66.6 kΩ f _g *= 40 Hz 19 V 14 V	Digitaleingang Positiv (siehe <u>E</u>)	Eingangswiderstand Eingangsfrequenz Einschaltpegel Ausschaltpegel	22.6 ±0.5 kΩ f _g *= 60 Hz 6.5 ± 0.2 V 4.5 ± 0.2 V
Din 4.7			Pin 20, 21	Digitaleingang	40 Dit
Pin 4, 7	Analog- oder Digital- eingang			Auflösung Abweichung	12 Bit ± 1 % full scale
	Auflösung Abweichung	12 Bit ± 1 % full scale	Digitaleingang Positiv (siehe <u>E</u>)	Eingangswiderstand Eingangsfrequenz	22.6 ±0.5 kΩ f _a *= 55 Hz
Spannungseingang 011.4 V (siehe A)	Eingangswiderstand Eingangsfrequenz Linearitätsabweichung	22.6 ±0.5 kΩ f *=55 Hz 3 %		Einschaltpegel Ausschaltpegel	6.5 ± 0.2 V 4.5 ± 0.2 V
Digitaleingang Positiv (siehe A)	Eingangswiderstand Eingangsfrequenz Einschaltpegel Ausschaltpegel	22.6 ±0.5 kΩ f _g *= 55 Hz 6.5 ± 0.2 V 4.5 ± 0.2 V			
Frequenzeingang (siehe \underline{D})	Eingangswiderstand Eingangsfrequenz	22.6 ±0.5 kΩ +-3% Abwei- chung bis 2			

Einschaltpegel Ausschaltpegel kHz 6.5 ± 0.2 V 4.5 ± 0.2 V

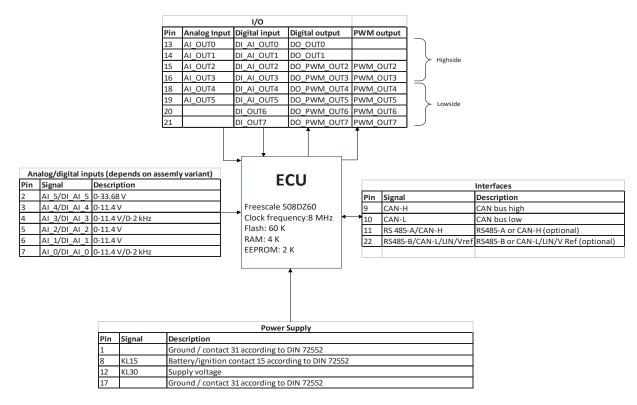
^{*}f_q= Grenzfrequenz (-3 dB)

ÜBERSICHT DER AUSGÄNGE

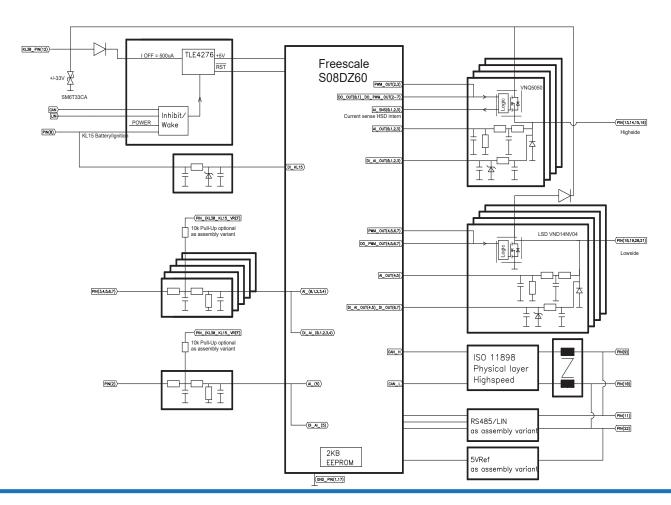
Pin 13, 14 HSD	Schutzbeschaltung für induktive Lasten	Optional inter- griert	Pin 18, 19, 20, 21 LSD		
	Diagnose Leitungsbruch	Über Strom- rücklesung	Digital, positiv- schaltend (Low	Schaltspannung Schaltstrom	9-32 V DC 0.02-2.5 A
	Diagnose Kurz-	Über Strom-	side, siehe <u>E</u>)		
Digital, plusschal-	schluss Schaltspannung	rücklesung 9-32 V DC	PWM-Ausgang (siehe <u>F</u>)	Ausgangsfrequenz Tastverhältnis	500 Hz 01000 ‰
tend (High-Side,	Schaltstrom	0.02-2.5 A		Auflösung	1 %
siehe <u>E</u>)			Kurzschlussfestig- keit gegen GND	Abschaltung der einz erfolgt durch low-side	
Kurzschlussfestig-	Abschaltung der einze		und US Hinweis für die		
keit gegen GND und Us	erfolgt durch Ausgangs	erfolgt durch Ausgangstreiber		Leckstrom (Bauteil- bedingt)	≤ 150 µA
Din 45 40	Calautala a ala altuus s	Ontionalinton	LED's		
Pin 15, 16 HSD	Schutzbeschaltung für induktive Lasten	Optional inter- griert			
	Diagnose Leitungsbruch	Über Stromrück- lesung			
	Diagnose Kurz- schluss	Über Stromrück- lesung			
Digital, plusschaltend (High-Side, siehe <u>E</u>)	Schaltspannung Schaltstrom Umrechnungsfaktor	9-32 V DC 0.02-2.5 A			
sierie <u>L</u>)	Stromrücklesung	1 Digit ≙ 2.26 mA			
PWM-Ausgang (siehe <u>F</u>)	Ausgangsfrequenz Tastverhältnis Auflösung Schaltstrom	500 Hz 01000 % 1 % bis 2,5A** (siehe Seite 5)			
Kurzschlussfestig- keit gegen GND und US	Abschaltung der einze erfolgt durch Ausgangs				


ANSCHLUSSBELEGUNG, STROMVERSORGUNG UND SCHNITTSTELLEN

Pin	Beschreibung	Pin	Beschreibung
1	Masse / Kontakt 31 DIN 72552 konform	9	CAN Bus high
8	Batterie/Zündung Kontakt 15 DIN 72552 konform	10	CAN Bus low
12	Versorgungsspannung	11	RS 485 - A / CAN Bus high / ground (Bestückungsvariante, ansonsten nicht vorhanden)
17	Masse	22	RS-485 - B / CAN Bus low / LIN / 5V Ref (Bestückungsvariante, ansonsten nicht verbunden)


ANSCHLUSSBELEGUNG EIN- UND AUSGÄNGE

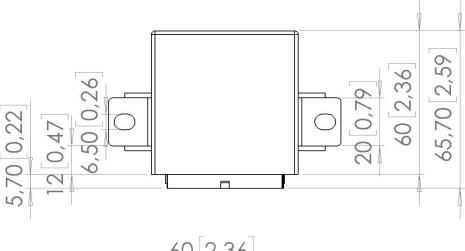
Pin	Programm Signal	Programm Beschreibung	Pin	Signal	Programm Beschreibung		
2	AI_5 DI_AI_5	Analogeingang 5; 0-33.68 V oder Digitaleingang	15	AI_OUT2 / DI_AI_OUT2	Analog/Digitaleingang IO2; 0-11.4 V		
3	AI_4 DI_AI_4	Analogeingang 4; 0-11.4 V oder Digitaleingang		DO_PWM_OUT2 AI_SNS_2 PWM_OUT2	oder Digitalausgang DO2 mit Statusrückmeldung PWM fähig		
4	Al_3 Dl_Al_3	Analogeingang 3; 0-11.4 V oder Digitaleingang	16	AI_OUT3 / DI_AI_OUT3	Analog/Digitaleingang IO3; 0-11.4 V		
5	Al_2 Dl_Al_2	Analog input 2; 0-11.4 V oder Digitaleingang		DO_PWM_OUT3 AI_SNS_3	oder Digitalausgang DO3 mit Statusrückmeldung		
6	AI_1	Analog input 1; 0-11.4 V		PWM_OUT3	PWM fähig		
	DI_AI_1	oder Digitaleingang	18	AI_OUT4 / DI_AI_OUT4	Analog/Digitaleingang IO4;		
7	AI_0 DI_AI_0	Analog input 0; 0-11.4 V oder Digitaleingang		DO_PWM_OUT4 PWM_OUT4	0-11.4 V oder Digitalausgang DO4 PWM fähig		
13	AI_OUT0 / DI_OUT0	Analog/Digitaleingang IO0; 0-11.4 V	19	AI_OUT5 / DI_AI_OUT5	Analog/Digitaleingang IO5;		
	DO OUTO	oder Digitalausgang DO0 mit			0-11.4 V		
	AI_SNS0	Statusrückmeldung		DO_PWM_OUT5 PWM_OUT5	oder Digitalausgang DO5 PWM fähig		
14	AI_OUT1 / DI_OUT1		20	_			
	DO_OUT1 AI_SNS1	0-11.4 V oder Digitalausgang DO1 mit Statusrückmeldung	20	DI_AI_OUT6 DO_PWM_OUT6 PWM_OUT6	Digitaleingang IO6; 0-11.4 V oder Digitalausgang DO6 PWM fähig		
	_	<u> </u>	21	DI_AI_OUT7 DO_PWM_OUT7 PWM_OUT7	Digitaleingang IO7; 0-11.4 V oder Digitalausgang DO7 PWM fähig		

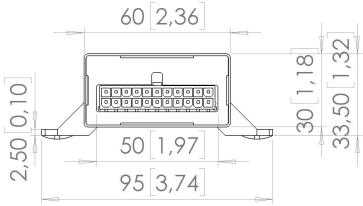


PIN ÜBERSICHT

BLOCK DIAGRAMM

DATENBLATT CAN I/O & CAN SPS HIGH & LOWSIDE 1.129.


LEISTUNGSTEST


1°			
	Test Nr.	Last	Dauer
Leistungstest bei +85 °C (Digitalausgänge)	1	4 x 2,5 A	Permanent
	2	2 x 2 A 2 x 4 A	30 Minuten
	3	2 x 2,5 A 2 x 3,5 A	10 Minuten
	4	2 x 5 A	5 Minuten
	5	1 x 6 A	10 Minuten

3°			
	Test Nr.	Last	Dauer
Leistungstest bei	1	4 x 2,0 A	Permanent
+80 °C (PWM-Ausgänge mit Testfrequenz	2	4 x 2,5 A	15 Minuten
f=200 Hz und 90 % Duty Cycle)	3	1 x 3,5 A 3 x 2,5 A	2 Minuten
	4	2 x 3,5 A	2 Minuten
	5	1 x 5 A	Permanent

5°			
	Test Nr.	Last	Dauer
Leistungstest bei	1	4 x 1 A	Permanent
+85 °C (PWM-Ausgänge mit Testfrequenz f=1	2	4 x 1,5 A	1 Minuten
kHz und 90 % Duty	3	2 x 2,5 A	5 Minuten
Cycle)	4	1 x 3,5 A	30 Minuten

TECHNISCHE ZEICHNUNG (IN MM)

DATENBLATT CAN I/O & CAN SPS HIGH & LOWSIDE 1.129.

BESTÜCKUNGSVARIANTEN UND BESTELLINFORMATIONEN

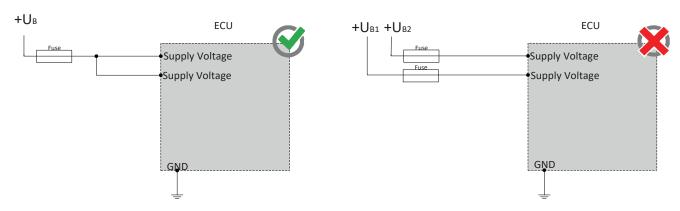
Bestell- nummer		Eingänge							Ausgänge		CAN Bus	Besonderheiten
	A Spannung 0 – 11.4 V	B Spannung 0 – 33 V	C Strom 0 - 24 mA	D Frequenz Hz	Sensor 10 kΩ pull-up	PT1000 Sensor 1 kΩ pull- up	E I/O´s (I/Os (optional al Digitaleingan Digitalausg	g oder	F PWM ≤	500 Hz	High- Speed	
1.129.300.0001	3,4,5,6,7	2					13,14,15,16,18,	,19,20,21	15,16,18,1	9,20,21	Х	5 V Ref
1.129.301.0001	3,4,5,6,7	2		4,7			13,14,15,16,18,	,19,20,21	15,16,18,1	9,20,21	Х	-
1.129.312.0001	3,4,5,6,7	2		4,7			13,14,15,16,18,	,19,20,21	15,16,18,1	9,20,21	Х	LIN (Slave)
1.129.322.0001	3,4,5,6,7	2		4,7			13,14,15,16,18,	,19,20,21	15,16,18,1	9,20,21	Х	LIN (Master)

Seite 7 von 11 ©MRS Electronic GmbH & Co. KG Änderungen vorbehalten! Version 2.2

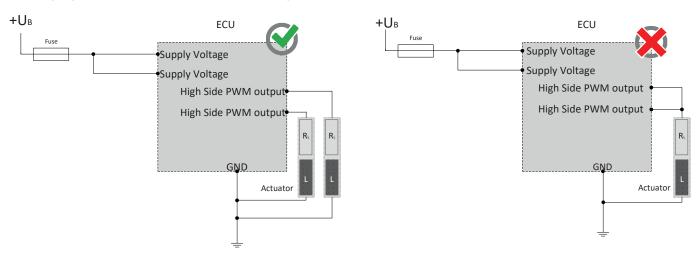
DATENBLATT CAN I/O & CAN SPS HIGH & LOWSIDE 1.129.

ZUBEHÖR

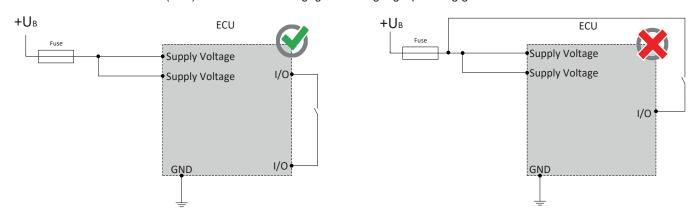
Beschreibung	Bestellnummer
Programmiertool MRS Developer Studio	1.100.100.09
Kabelsatz CAN I/O LHS	106817
Steckerpaket CAN I/O LHS	106940
PCAN-USB Interface	105358


HERSTELLER

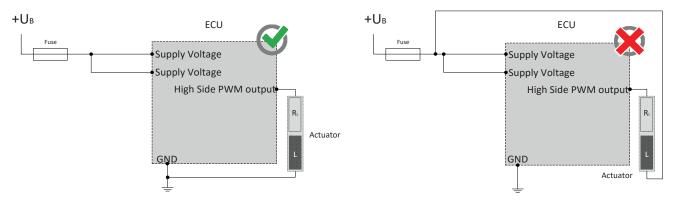
MRS Electronic GmbH & Co. KG Klaus-Gutsch-Str. 7 78628 Rottweil

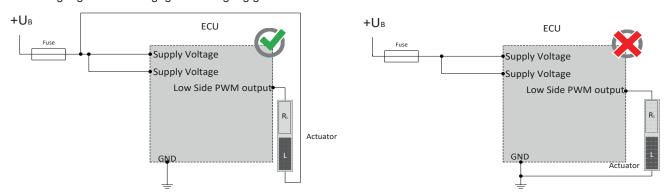


HINWEISE ZUR BESCHALTUNG UND LEITUNGSFÜHRUNG

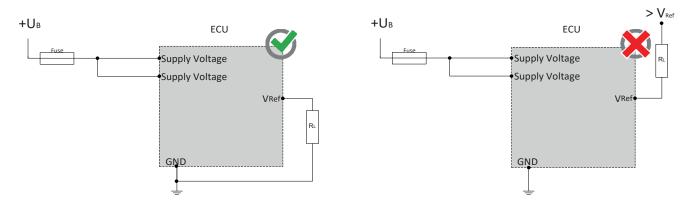

Die Elektronik und die Leistungsausgänge eines Steuergeräts müssen aus dem gleichen Stromnetz gespeist werden.

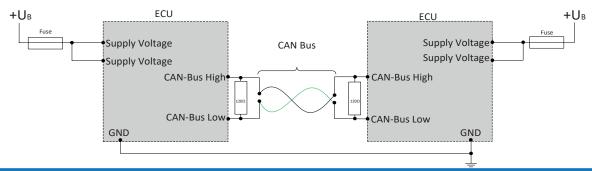
PWM Ausgänge dürfen nicht miteinander verbunden / gebrückt werden.


Die kombiniert nutzbaren Pins (I/Os) dürfen extern nicht gegen Versorgungsspannung geschalten werden.



HINWEISE ZUR BESCHALTUNG UND LEITUNGSFÜHRUNG


Higside-Ausgänge dürfen nur gegen Masse geschaltet werden.


Lowside-Ausgänge dürfen nur gegen Versorgung geschaltet werden.

Die Sensorversorgungen können durch die externe Beschaltung z.B. das Anlegen einer höheren Spannung "hochgezogen" werden, da Sie nur als Spannungsquelle nicht aber als Spannungssenke arbeiten. Das Hochziehen einer Spannungsquelle kann zu unvorhersehbaren Fehlfunktionen und bei dauerhaftem Betrieb zur Beschädigung des Steuergeräts führen.

Die CAN-Bus Kommunikation stellt die Hauptkommunikation zwischen Steuergerät und Fahrzeug dar. Schließen Sie daher den CAN-Bus mit besonderer Sorgfalt an und überprüfen Sie die korrekte Kommunikation mit dem Fahrzeug, um ungewünschtes Verhalten zu vermeiden.

DATENBLATT CAN I/O & CAN SPS HIGH & LOWSIDE 1.129.

SICHERHEITS- UND MONTAGEHINWEISE

Lesen Sie diese Hinweise unbedingt gründlich und vollständig durch, bevor Sie mit dem Modul arbeiten. <u>Beachten und befolgen Sie die Anweisungen der Betriebsanleitung; siehe www.mrs-electronic.com</u>

Qualifikation des Personals: Nur entsprechend qualifiziertes Fachpersonal darf an diesem Modul oder in dessen Nähe arbeiten.

SICHERHEIT

WARNUNG! Gefahr durch Fehlfunktionen am Gesamtsystem.

Unvorhergesehene Reaktionen oder Fehlfunktionen am Gesamtsystem können die Sicherheit von Mensch oder Maschine gefährden.

• Stellen Sie sicher, dass das Modul mit der korrekten Software ausgestattet ist, sowie Beschaltung und Parametrierung der Hardware entsprechen.

WARNUNG! Gefahr durch ungeschützte bewegte Komponenten.

Bei der Inbetriebnahme und Wartung des Moduls können vom Gesamtsystem unvorhergesehene Gefahren ausgehen.

- · Schalten Sie vor jeglichen Arbeiten das Gesamtsystem aus und sichern Sie es gegen unbeabsichtigtes Wiedereinschalten.
- Stellen vor Beginn der Inbetriebnahme sicher, dass sich das Gesamtsystem und Teile des Systems in einem sicheren Zustand befinden.
- · Das Modul darf nie unter Last und auch nicht unter Spannung verbunden und getrennt werden.

VORSICHT! Verbrennungsgefahr am Gehäuse.

Das Gehäuse des Moduls kann eine erhöhte Temperatur aufweisen.

· Berühren Sie das Gehäuse nicht und lassen Sie vor Arbeiten am System alle Systemkomponenten abkühlen.

BESTIMMUNGSGEMÄSSE VERWENDUNG

Das Modul dient zur Steuerung oder Schaltung eines oder mehreren elektrischen Systemen oder Subsystemen in Kraftfahrzeugen und Arbeitsmaschinen und darf nur für diesen Zweck eingesetzt werden. Das Modul darf nur im Industriebereich betrieben werden.

WARNUNG! Gefahr durch nicht bestimmungsgemäße Verwendung!

Das Modul ist nur für den Einsatz in Kraftfahrzeugen und mobilen Arbeitsmaschinen bestimmt.

- Die Anwendung in sicherheitsrelevanten Systemteile für Personenschutz ist nicht zulässig.
- Verwenden Sie das Modul nicht in explosionsgefährdeten Bereichen.

Sie handeln bestimmungsgemäß:

- wenn der Betrieb des Moduls innerhalb des zugehörigen Datenblatt spezifizierten und freigegebenen Betriebsbereiche erfolgt.
- wenn Sie sich strikt an diese Hinweise halten und keine eigenmächtigen Fremdhandlungen vornehmen, die Sicherheit von Personen und die Funktionstüchtigkeit des Moduls gefährden.

Pflichten der Hersteller von Gesamtsystemen

Systementwicklungen, Installation und Inbetriebnahme von elektrischen Systemen dürfen nur von ausgebildeten und erfahrenem Personal vorgenommen werden, die mit dem Umgang der eingesetzten Komponente sowie des Gesamtsystems hinreichend vertraut sind.

Es muss sichergestellt werden, dass nur funktionstüchtige Module eingesetzt werden. Das Modul muss bei Ausfall bzw. Fehlverhalten sofort ausgetauscht werden.

Es muss sichergestellt werden, dass die Beschaltung und Programmierung des Moduls bei einem Ausfall oder einer Fehlfunktion nicht zu sicherheitsrelevanten Fehlfunktionen des Gesamtsystems führt.

Der Hersteller des Gesamtsystems ist verantwortlich für den korrekten Anschluss der gesamten Peripherie (z.B. Kabelquerschnitte, Stecker, Vercrimpungen, richtige Auswahl/Anschluss von Sensoren/Aktoren).

Das Modul darf nicht geöffnet werden. Am Modul dürfen keine Änderungen bzw. Reparaturen durchgeführt werden.

Montage

Der Montageort muss so gewählt sein, dass das Modul möglichst geringer mechanischer und thermischer Belastung ausgesetzt ist. Das Modul darf keiner chemischen Belastung ausgesetzt sein.

Das Modul darf nach Herabfallen nicht mehr verwendet werden und muss zur Überprüfung an MRS zurück gesendet werden.

Montieren Sie das Modul so, dass die Stecker nach unten zeigen. So kann gegebenenfalls Kondenswasser abfließen. Durch Einzelabdichtung der Kabel/Adern muss sichergestellt werden, dass kein Wasser in das Modul gelangen kann.

Inbetriebnahme

Die Inbetriebnahme darf nur von qualifiziertem Personal durchgeführt werden. Die Inbetriebnahme darf nur erfolgen, wenn der Zustand des Gesamtsystems den geltenden Richtlinien und Vorschriften entspricht.

STÖRUNGSBEHEBUNG UND WARTUNG

HINWEIS Das Modul ist wartungsfrei und darf nicht geöffnet werden!

Weißt das Modul Beschädigungen an Gehäuse, Rastnasen, Dichtungen, Flachsteckern auf, muss das Modul außer Betrieb genommen werden.

Die Störungsbehebung und Reinigungsarbeiten dürfen nur im spannungslosen Zustand durchgeführt werden. Entfernen Sie das Modul zur Störungsbehebung und Reinigung. Beachten Sie die Hinweise in den anderen technischen Unterlagen.

Prüfen Sie die Unversehrtheit des Moduls sowie alle Flachstecker, Anschlüsse und Pins auf mechanische Schäden, Schäden durch Überhitzung, Isolationsschäden und Korrosion. Prüfen Sie bei Fehlschaltungen die Software, Beschaltung und Parametrierung.

Reinigen Sie das Modul nicht mit Hochdruckreinigern oder Dampfstrahlern. Verwenden Sie keine aggressive Lösungs- oder Scheuermittel.